Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 15612, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142200

RESUMO

We analysed suppressive effects of potassium (K) fertilisation on radiocesium (137Cs) uptake by hinoki cypress (Chamaecyparis obtusa) seedlings from soils contaminated after the Fukushima Daiichi Nuclear Power Plant accident. Three-year-old seedlings were planted in a clear-cut forest (ca. 4 ha) during June-July 2014, and potassium chloride fertiliser (83 kg K ha-1) was applied twice (August 2014 and April 2015). 137Cs concentrations in the needles in the fertilised plots were one-eighth of those in the control (unfertilised) plots at the end of the second growing season (October 2015). Our results clearly indicated that K fertilisation reduced radiocesium transfer from soil to planted cypress seedlings. A linear mixed model analysis revealed that 137Cs concentrations in the needles were significantly affected by 137Cs inventory in the soil (Bq m-2) adjacent to the sampled seedlings, exchangeable K concentrations in surface mineral soils (0-5 cm) and fertilisation. The exchangeable K concentrations in surface soils in October 2015 did not differ from those in August 2014 (before fertilisation) in the fertilised plots and in the control plots. These results suggested that the levels of exchangeable K would temporarily increase by fertilisation during the growing season, and radiocesium uptake by tree roots was suppressed.


Assuntos
Cupressus/crescimento & desenvolvimento , Acidente Nuclear de Fukushima , Potássio/farmacologia , Monitoramento de Radiação , Radioisótopos de Césio/toxicidade , Cupressus/efeitos dos fármacos , Cupressus/efeitos da radiação , Florestas , Humanos , Japão , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Plântula , Poluentes Radioativos do Solo/toxicidade
2.
Environ Manage ; 54(6): 1412-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25216990

RESUMO

This study was aimed at determining, under field conditions, early interactions between planted cypress seedlings and their associated shrubs in a mesic area of Andean Patagonia and, in a nursery, the effects of increasing light availability on cypress performance when soil water was not a limiting factor. The field experiment was performed in a former cypress-coihue mixed forest (42°02'S, 71°33'W), which was replaced in the 1970s by a plantation of radiata pine. In 2005, 800 cypress seedlings were planted under maqui shrubs in a clear-cut area of the pine stand. In 2007, two treatments were set: no-competition treatment ([NCT] i.e., the surrounding aboveground biomass was removed) and competition treatment ([CT] i.e., without disturbance). The nursery experiment (42°55'S, 71°21'W) consisted of two groups: "shade" (grown under shade cloth) and "sun" (grown at full sun) cypress seedlings. After one growing season, seedling survival and stem growth (in height and diameter) were determined at both sites. Furthermore, the growth rate of leaves, stems, and roots was determined in the nursery. In the field experiment, height growth and survival in NCT were significantly greater than in CT, and a competition process occurred between cypress and surrounding shrubs. In the nursery, sun plants grew more in diameter and increased root weight more than shade plants. Results also showed that in mesic areas of Patagonia, decreasing competition and increasing light levels produced stouter seedlings better adapted to support harsh environmental conditions. Therefore, the removal of protecting shrubs could be a good management practice to improve seedling establishment.


Assuntos
Cupressus/crescimento & desenvolvimento , Ecossistema , Florestas , Plântula/crescimento & desenvolvimento , Argentina , Biomassa , Cupressus/fisiologia , Cupressus/efeitos da radiação , Agricultura Florestal/métodos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Plântula/fisiologia , Plântula/efeitos da radiação , Solo , Luz Solar , Água
3.
J Photochem Photobiol B ; 117: 61-9, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23079539

RESUMO

Italian cypress (Cupressus sempervirens L.) is native to the eastern Mediterranean, an area characterised by hot, dry summers and mild winters. Over the centuries, however, the species has been introduced into more northerly regions, a long way from its native range. The current, generally warmer climatic conditions brought about by global warming have favoured its cultivation in even more northerly areas in the Alps and other European alpine regions. Given that not only temperature, but also light availability are limiting factors for the spread of cypress in these environments, it is important to ascertain how this species copes with low light conditions. The photosynthetic characteristics of cypress leaves collected from different portions of the crown with contrasting light availability were evaluated by several methods. Chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoid (Car) content was found to be higher in shade leaves than in sun leaves when measured on a fresh mass basis, although enzymatic activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) and nitrate reductase were lower in shade leaves. When the efficiency of PSII was measured by chlorophyll fluorescence, a marked reduction in F(m) was found in shade leaves, while F(o) remained unchanged. The use of exogenous electron donors diphenyl carbazide (DPC) and NH(2)OH actually improved the photosynthetic efficiency of shade leaves, and the same effect was found when PSII electron transport activity was measured as O(2) evolution. Altogether, these results seem to indicate lesser photosynthetic efficiency in shade leaves, probably an impairment on the donor side of the PSII. At the same time, analysis by SDS-PAGE revealed differences in the polypeptide composition of the thylakoid membranes of sun and shade leaves: the bands corresponding to 23 kDa, 28-25 kDa and 33 kDa polypeptides were less intense in the thylakoid membranes extracted from shade leaves. These results were further confirmed by an immunological study showing that the content of the 33 kDa protein, corresponding to the extrinsic PSII protein PsbO, was significantly diminished in shade leaves. The high plasticity of cypress leaves appears to be an advantageous trait in the plant's response to variations in environmental conditions, including global change. Implications for the management of this Mediterranean species at the northern edge of its distribution are discussed.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Cupressus/fisiologia , Cupressus/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Luz Solar , Técnicas de Cultura , Cupressus/crescimento & desenvolvimento , Relação Dose-Resposta à Radiação , Transporte de Elétrons/efeitos da radiação , Europa (Continente) , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Pigmentação/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Solubilidade , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
4.
Tree Physiol ; 25(8): 1033-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15929934

RESUMO

Photoinhibition of photosynthesis and photosynthetic recovery were studied in detached needles of cypress (Cupressus sempervirens L.) Clones 52 and 30 under controlled conditions of high irradiation (about 1900 micromol m(-2) s(-1) for 60 min; HL treatment), followed by 60 min in darkness. The degree of photoinhibition was determined based on the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), which is a measure of the potential efficiency of photosystem II (PSII), and on electron transport measurements. The Fv/Fm ratio declined in needles of both clones in response to the HL treatment. Minimal fluorescence (Fo) increased in HL-treated needles of both clones. The HL treatment decreased rates of whole-chain and PSII activity of isolated thylakoids more in Clone 52 than in Clone 30. In needles of both clones, PSI activity was less sensitive to photoinhibition than PSII activity. In the subsequent 60-min dark incubation, fast recovery was observed in needles of both clones, with PSII efficiencies reaching similar values to those in non-photoinhibited needles. The artificial exogenous electron donors diphenyl carbazide (DPC), hydroxylamine (NH2OH) and manganese chloride (MnCl2) failed to restore the HL-induced loss of PSII activity in needles of Clone 30, whereas DPC and NH2OH significantly restored PSII activity in photoinhibited needles of Clone 52. Quantification of the PSII reaction center protein D1 and the 33-kDa protein of the water-splitting complex following HL treatment of needles revealed pronounced differences between Clone 52 and Clone 30. The large decrease in PSII activity in HL-treated needles was caused by the marked loss of D1 protein and 33-kDa protein in Clone 30 and Clone 52, respectively.


Assuntos
Cupressus/metabolismo , Cupressus/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , 2,6-Dicloroindofenol , Clorofila/metabolismo , Cupressus/genética , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...